

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics				
QUALIFICATION CODE: 07BAMS		LEVEL: 6		
COURSE CODE: LIA601S		COURSE NAME: LINEAR ALGEBRA 2		
SESSION: JU	JNE 2019	PAPER: THEORY		
DURATION: 3	HOURS	MARKS: 100		

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER			
EXAMINER	Dr S.N. NEOSSI NGUETCHUE AND Pr A. KAMUPINGENE		
MODERATOR:	Mr B. OBABUEKI		

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 3 decimals where necessary unless mentioned otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments

None

QUESTION 1 [50 Marks]

- **1.1.** Suppose that we know for a linear transformation of \mathbb{R}^2 that T((1,1)) = (3,5) and T((-1,2)) = (0,1).
 - 1.1.1 Find the matrix A such that T(x) = Ax. [8]
 - **1.1.2** Given the basis $\mathcal{B} = \{(1, -2), (3, 3)\}$, find the matrix B so that $T[x]_{\mathcal{B}} = B[x]_{\mathcal{B}}$ (that is A and B are similar relative to the basis B.)
 - 1.1.3 Find the \mathcal{B} -coordinates of the vector x = (2,5) using the basis in 1.1.2 above. [7]
- **1.2.** Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be a mapping defined by

$$T(f(x)) = f(x) + (1+x)f'(x)$$
, for any $x \in \mathbb{R}$, where

 $P_2(\mathbb{R})$ is the set of all polynomials of degree at most 2 with real coefficients.

- 1.2.1 Show that T is a linear operator. [10]
- 1.2.2 Find all the eigenvalues of T. (Hint: use the basis $p_1 = 1, p_2 = x, p_3 = x^2$) [10]
- 1.2.3 Find all the eigenvalues of the operator $L = T^5 + 2T^3 + 5T$. [6]

QUESTION 2 [20 Marks]

Consider the matrix $P = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{pmatrix}$.

- **2.1.** Find a diagonal matrix *D* similar to *P*. [17]
- **2.2.** Deduce from the previous question the computation of P^5 . [3]

QUESTION 3 [30 Marks]

- **3.1.** Let $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ satisfy $A^3 = A$. Show that A is diagonalizable. [7]
- **3.2.** Let A be a 4×4 matrix defined by

$$A = \begin{pmatrix} 2 & 0 & 1 & -3 \\ 0 & 2 & 4 & 8 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

- **3.2.1** Find the minimal polynomial of A.
- **3.2.2** Find a Jordan canonical form J of A. [7]

16

END OF PAPER TOTAL MARKS: 100

God bless you !!!